Aluminum Structure Welding
Aluminum Structure Welding

Aluminum Structure Welding

Aluminium and its alloys are used in fabrications because of their low weight, good corrosion resistance and weldability. Although normally low strength, some of the more complex alloys can have mechanical properties equivalent to steels. The various types of aluminium alloy are identified and guidance is given on fabricating components without impairing corrosion and mechanical properties of the material or introducing imperfections into the weld.

Aluminium alloys are ubiquitous in transport applications because they provide engineering materials with good strength-to-weight ratios at reasonable cost. Further applications make use of the corrosion resistance and conductivity (both thermal and electrical) of some alloys. Although normally low strength, some of the more complex alloys can have mechanical properties equivalent to steels. Owing to the many benefits of aluminium alloys offered to industry, there is a need to identify best practices for joining them.

Email: [email protected]
WhatsApp: 0086-18301953841

Chat Online     Leave Message

NO Country China(GB/T) American AA Japan JIS German CORUS Britain DIN France NF Russian ГOCT India IS ISO EN
1 Grade 2A01 BД17/1170
2 Standards GB/T3190-1996 ГOCT4785-1974
3 2A06 Д16/1190
4 GB/T3190-1996 ГOCT4785-1974
5 2A10 B65/1165
6 GB/T3190-1996 ГOCT4785-1974
7 2A11 2017/A92017 A2017 Д1/1110 24534 AL Cu4MgSi
8 GB/T3190-1996 AA/UNS JIS H4000-1999
JIS H4040-1999
ГOCT4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989
9 2A11 2024 A2024 AICuMg2/3.1355 2024(A-U4G1) Д16/1160 24530 AICu4Mg1 EN AW-2024/AI Cu4Mg1
10 GB/T3190-1996 AA JIS H4000-1999
JIS H4040-1999
DIN 1725-1-1986 NF A50-411
NF A50-451
ГOCT4785-1974 IS 5902 ISO 209.1-1989 EN 573-3-1994
11 2A16 2219/A92219 A2219 Д20/1201 AICu6Mn EN AW-2219/AI Cu6Mn
12 GB/T3190-1996 AA/UNS JIS H4000-1999
JIS H4040-1999
ГOCT4785-1974 ISO209.1-1989 EN 573-3-1994
13 2A70 2618/A92618 A2618 AK4-1/1141
14 GB/T3190-1996 AA/UNS JIS H4140-1988 ГOCT4785-1974
15 2A80 A2N01 AK4/1140
16 GB/T3190-1996 JIS H4140-1988 ГOCT4785-1974
17 2A90 2018/A92018 A2018 AK2/1120
18 GB/T3190-1996 AA/UNS JIS H4140-1988 ГOCT4785-1974
19 2011 2011/A92011 A2011 AICuBiPb/3.1655 2011(FC1) 2011(A-U5PbBi) ~Д1/1110 AI Cu6BiPb EN AW-2011/AI Cu6BiPb
20 GB/T3190-1996 AA/UNS JIS H4040-1999
JIS H4080-1999
DIN 1725-1-1986 BS 1470-1988 NF 50-411 ГOCT4785-1974 ISO 209.1-1989 EN 573-3-1994
21 2014 2014/A92014 A2014 AICuSiMn/3.1655 2014(H15) 2014(A-U4SG) AK8/1380 24345 AI Cu4SiMg EN AW-2014/AI Cu4SiMg
22 GB/T3190-1996 AA/UNS JIS H4000-1999
JIS H4040-1999
DIN 1725-1-1986 BS 14710-1988 NF A50-411
NF A50-451
ГOCT4785-1974 IS733-2001
IS737-2001
ISO209.1-1989 EN 573-3-1994
23 2014A 2014A A2014A AI Cu4SiMg(A) EN AW-2014A/AI Cu4SiMg(A)
24 GB/T3190-1996 AA JIS H4100-1999
JIS H4040-1999
ISO 209.1-1989 EN 573-3-1994
25 2017A 2017A/A92017 A2017A AICuMg1/3.1325 2017A(A-U4G) AK21/1120 24534 AI Cu4MgSi(A) EN AW-2017A/AI Cu4MgSi(A)
26 GB/T3190-1996 AA/UNS JIS H4040-1999
JIS H4080-1999
DIN 1725-1-1986 NF A50-411
NF A50-451
ГOCT4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
27 2024 2024/A92024 A2024 AICuMg2/3.1355 2024(A-U4G1) Д16/1160 24530 AI Cu4Mg1 EN AW-2024/AI Cu4Mg1
28 GB/T3190-1996 AA/UNS JIS H4100-1999
JIS H4040-1999
DIN 1725-1-1986 NF A50-411
NF A50-451
ГOCT47785-1974 ГOCT47785-1974 IS 739-2001 EN 573-3-1994
29 2124 2124/A92124 Д16Л/1161 EN AW-2124/AI Cu4Mg1(A)
30 GB/T3190-1996 AA/UNS ГOCT4785-1974 EN 573-3-1994
31 2117 2117/A92117 A2117 AICu2.5Mg0.5/3.1305 2117(A-U2G) AI Cu2.5Mg EN AW-2117/AI Cu2.5Mg
32 GB/T3190-1996 AA/UNS JIS H4040-1999 DIN 1725-1-1986 NFA50-451 ISO 209.1-1989 EN 573-3-1994
33 2214 2214/A92214 ~ AK8/1380 EN AW-2214/AI Cu4SiMg(B)
34 GB/T3190-1996 AA/UNS ГOCT4785-1974 EN 573-3-1994
35 2218 2218/A92218 A2218 2218(A-U4N)
36 GB/T3190-1996 AA/UNS JIS H4140-1988 NF 50-411
37 2618 2618/A92618 A2618 AK4-1/1141
38 GB/T 3190-1996 AA/UNS JIS H4140-1988 ГOCT 4785-1974
39 2001/A92001 2001(A-U6MT) EN AW-2001/AI Cu5.5MgMn
40 AA/UNS NF A50-101 EN 573-3-1994
41 2007/A92007 AICuMgPb/3.1645 EN AW-2007/AI Cu4PbMgMn
42 AA/UNS DIN 1725-1-1986 EN 573-3-1994
43 5A02(LF2) 5052/A95052 A5052 AIMg2.5/3.3523 5052(NS4) 5052(A-G2.5C) AMr2/1520 AI Mg2.5 EN AW-5052/AI Mg2.5
44 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4100-1988
DIN 1725.1-1986/W-Nr. BS 1470-1988 NF A50-411
NF A50-451
ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
45 5A03(LF3) 5154/A95154 A5154 5154A(NS5) 5154A(A-G3C) AMr3/1530 AI Mg3.5 EN AW-5154A/AI Mg3.5(A)
46 GB/T 3190-1996 AA/UNS JIS H4000-1999 BS 1470-1988 NF A50-411
NF A50-451
ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
47 5A05(LF5) 5456/A95456 ~A5056 AIMg5/3.3555 5056(A56S) ~AMr5/1550 AI Mg5Mn1 ~EN AW-5019/AI Mg5
48 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4080-1999
DIN 1725.1-1986/W-Nr. BS 1470-1988 ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
49 5A06(LF6) A5005 AMr6/1560
50 GB/T 3190-1996 JIS H4040-1999
JIS H4100-1988
ГOCT 4785-1974
51 5005 5005/A95005 A5005 5005(N41) 5005(A-G0.6) AMr1/1510 51000-A AI Mg1(B) EN AW-5005/AI Mg1(B)
52 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4100-1988
BS 1470-1988 NF A50-411
NF A50-451
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
53 5019 5019/A95019 AIMg5/3.3555 5019(NB6) AMr5/1550 EN AW-5019/AI Mg5
54 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-Nr. BS 1470-1988 ГOCT 4785-1974 EN 573-3-1994
55 5050 5050/A95050 AIMg1.5/3.3316 5050(2L44) 5050(A-G1.5) AMr1/1510 51000-B AI Mg1.5(C) EN AW-5050/AI Mg1.5(C)
56 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-N BS 1470-1988 NF A50-451 ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
57 5052 5052/A95052 A5052 AIMg2.5/3.3523 5052(2155) 5052(A-G2.5C) AMr2/1520 AI Mg2.5 EN AW-5052/AI Mg2.5
58 GB/T 3190-1996 AA/UNS JIS H4000-1988 DIN 1725.1-1986/W-Nr. BS "L" NF A50-411
NF A50-451
ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
59 5056(LF5-1) 5056A95056 A5056 AIMg5/3.3555 5056(NG6/2L58) AMr5/1550 AI Mg5Cr EN AW-5056A/AI Mg5
60 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4080-1999
DIN 1725.1-1986/W-Nr. BS 1470-1988/BS "L" ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
61 5083 5083/A95083 A5083 AIMg4.5Mn/3.3547 5083(NT8) 5083(A-G4.5MC) 54300 AI Mg4.5Mn0.7 EN AW-5083/AI Mg4.5Mn0.7
62 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4080-1999
DIN 1725.1-1986/W-Nr. BS 1470-1988 NF A50-411
NF A50-451
IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
63 5086 5086/A95086 A5086 AIMg4Mn/3.3545 5086(A-G4MC) AMr4/1540 AI Mg4 EN AW-5086/AI Mg4
64 GB/T 3190-1996 AA/UNS JIS H4000-1999
JIS H4080-1999
DIN 1725.1-1986/W-Nr. NF A50-411
NF A50-451
ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
65 5154 5154/A95154 A5154 5154(A-G3C) AMr3/1530 AI Mg3.5
66 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4100-1988
NF A50-411
NF A50-451
ГOCT 4785-1974 ISO 209.1-1989
67 5154A 5154A 5154A(NS5) 53000 AI Mg3.5(A) EN AW-5154A/AI Mg3.5(A)
68 GB/T 3190-1996 AA BS 1470-1988 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
69 5182 5182/A95182 A5182 AIMg5Mn/3.3549 5182(A-G4.5M) EN AW-5182/AI Mg4.5Mn0.4
70 GB/T 3190-1996 AA/UNS JIS H4000-1999 DIN 1725.1-1986/W-Nr. NF A50-481 EN 573-3-1994
71 5183 5183/A95183 A5183 AIMg4.5Mn/3.3547 5183(NG8) (~A-G4.5MC) AMr4.5 AI Mg4.5Mn0.7(A) EN AW-5183/AI Mg4.5Mn0.7(A)
72 中国(GB/T) 美国AA 日本JIS 德国CORUS 英国DIN 法国NF 俄罗斯ГOCT 印度IS 国际标准化组织ISO 欧洲标准 EN
73 5251 5251/A95251 AIMg2Mn0.3/3.3525
251(N4/3L80)
5
5251(A-G2M) AMr2/1520 52000 AI Mg2 EN AW-5251/AI Mg2
74 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-Nr. BS 1470-1988/BS "L" NF A50-411
NF A50-451
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
75 5356 5356/A95356 A5356 AI Mg5Cr(A) EN AW-5356/AI Mg5Cr(A)
76 GB/T 3190-1996 AA/UNS JIS Z3232-1986 ISO 209.1-1989 EN 573-3-1994
77 5454 5454/A95454 A5454 AIMg2.7Mn/3.3537 5454(N51) 5454(A-G2.5MC) AI Mg3Mn EN AW-5454/AI Mg3Mn
78 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4100-1999
DIN 1725.1-1986/W-Nr. BS 1470-1988 NF A50-411
NF A50-451
ISO 209.1-1989 EN 573-3-1994
79 5456 5456/A5456 ~AMr5/1550 AI Mg5Mn1 ~EN AW-5456A/AI Mg5Mn1(A)
80 GB/T 3190-1996 AA/UNS ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
81 5554 5554/A95554 A5554 5554(N52) AI Mg3Mn(A) EN AW-5554/AI Mg3Mn(A)
82 GB/T 3190-1996 AA/UNS JIS H4160-1994 BS 1470-1988 ISO 209.1-1989 EN 573-3-1994
83 5049/A95049 AIMg2Mn0.8/3.3527 5049 EN AW-5049/AI Mg2Mn0.8
84 AA/UNS DIN 1725.1-1986/W-Nr. NF A50-451 EN 573-3-1994
85 5556/A95556 A5556 5556(N61) 55380 EN AW-5556A/AI Mg5Mn
86 AA/UNS JIS H33263-1992 BS 1470-1988 IS733-2001
IS737-2001
EN 573-3-1994
87 5654/A95654 A5654 EN AW-5654/AI Mg3.5Cr
88 AA/UNS JIS H4000-1988 EN 573-3-1994
89 6A02(LD2) ~6151 A6165 AISiMgCu/3.3214 AB/1340
90 GB/T 3190-1996 AA JIS H4040-1999
JIS H4100-1999
DIN 1725.1-1986/W-Nr. ГOCT 4785-1974
91 6005 6005/A96005 AI SiMg EN AW-6005/AI SiMg
92 GB/T 3190-1996 AA/UNS ISO 209.1-1989 EN 573-3-1994
93 6005A 6005A AIMgSi0.7/3.3210 AI SiMg(A) EN AW-6005A/AI SiMg(A)
94 GB/T 3190-1996 AA DIN 1725.1-1986/W-Nr. ISO 209.1-1989 EN 573-3-1994
95 6082 6082/A96082 AIMgSi1/3.2315 6082(A-SGM0.7) AД35/1350 64430 AI SiMgMn EN AW-6082/AI SiMgMn
96 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-Nr. NF A50-411
NF A50-451
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
97 6351 6351/A96351 AB/1340 AI SiMg0.5Mn EN AW-6351/AI SiMg0.5Mn
98 GB/T 3190-1996 AA/UNS ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
99 6060 6060/A96060 AIMgSi0.5/3.3206 6060(A-GS) AI MgSi EN AW-6060/AI MgSi
100 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-Nr. NF A50-411 ISO 209.1-1989 EN 573-3-1994
101 6061(LD30) 6061/A96061 A6061 AIMgSi1Cu/3.3211 6061(N20/H20) 6061(A-GSUC) AД33/1330 65032 AI Mg1SiCu EN AW-6061/AI Mg1SiCu
102 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4000-1999
DIN 1725.1-1986/W-Nr. BS 1470-1988 NF A50-411
NF A50-451
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
103 6063(LD31) 6063/A96063 A6063 6063(HT9) (~A-GS) AД31/1310 63400 AI Mg0.7Si EN AW-6063/AI Mg0.7Si
104 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4100-1999
BS 1470-1988 NF A50-411
NF A50-451
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
105 6063A 6063A AI Mg0.7Si(A) EN AW-6063A/AI Mg0.7Si(A)
106 GB/T 3190-1996 AA ISO 209.1-1989 EN 573-3-1994
107 6101 6101/A96101 A6101 ~E-AIMgSi0.5/3.3207 E-AI MgSi EN AW-6101/E-AI MgSi
108 GB/T 3190-1996 AA/UNS JIS H4180-1990 DIN 1725.1-1986/W-Nr. ISO 209.1-1989 EN 573-3-1994
109 6101A 6101A 6101A(E91E) E-AI MgSi(A) EN AW-6101A/E-AI MgSi(A)
110 GB/T 3190-1996 AA BS 2898-1988 ISO 209.1-1989 EN 573-3-1994
111 6081/A96081 6081(A-SGM0.3) EN AW-6081/AI Si0.9MgMn
112 AA/UNS NF A50-451 EN 573-3-1994
113 6262/A96262 6262 AI Mg1SiPb EN AW-6262/AI Mg1SiPb
114 AA/UNS BS 2898-1988 ISO 209.1-1989 EN 573-3-1994
115 6463/A96463 6463(91E/E6) EN AW-6463/AI Mg0.7Si(B)
116 AA/UNS BS 1474-1988 EN 573-3-1994
117 7A01(LB1) 7072/A97072 A7072 AI Zn1/3.4415 Aц1 EN AW-7072/AI Zn1
118 GB/T 3190-1996 AA/UNS JIS H4000-1999 DIN 1725.1-1986/W-Nr. ГOCT 4785-1974 EN 573-3-1994
119 7A03(LC3) B94/1940
120 GB/T 3190-1996 ГOCT 4785-1974
121 7A04(LC4) 7010/A97010 7010 B95/1950 AI Zn6MgCu EN AW-7010/AI Zn6MgCu
122 GB/T 3190-1996 AA/UNS BS 1470-1988 ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
123 7A05(705) 7005/A97005 A7N01 AцM 74530 AI Zn4.5Mg1.5Mn EN AW-7005/AI Zn4.5Mg1.5Mn
124 GB/T 3190-1996 AA/UNS JIS H4080-1999
JIS H4000-1999
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
125 7A10(LC10) ~7079
126 GB/T 3190-1996 AA
127 7A52(LC52\5210) ~7017/A97017 ≈1925
128 GB/T 3190-1996 AA/UNS ГOCT 4785-1974
129 7003(LC12) 7003/A97003 A7003 EN AW-7003/AI Zn6Mg0.8Zr
130 GB/T 3190-1996 AA/UNS JIS H4040-1999
JIS H4100-1999
EN 573-3-1994
131 7005 7005/A97005 A7N01 74530 AI Zn4.5Mg1.5Mn EN AW-7005/AI Zn4.5Mg1.5Mn
132 GB/T 3190-1996 AA/UNS JIS H4080-1999
JIS H4000-1999
IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
133 7020 7020/A9020 AIZn4.5Mg1/3.4335 7020(A-Z5G) ~1925C AI Zn4.5Mg1 EN AW-7020/AI Zn4.5Mg1
134 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-Nr. NF A50-411
NF A50-451
ГOCT 4785-1974 ISO 209.1-1989 EN 573-3-1994
135 7022 7022/A97022 AIZn1MgCu0.5/3.4345 EN AW-7022/AI Zn5Mg3Cu
136 GB/T 3190-1996 AA/UNS DIN 1725.1-1986/W-Nr. EN 573-3-1994
137 7050 7050/A97050 A7050 AI Zn6CuMgZr EN AW-7050/AI Zn6CuMgZr
138 GB/T 3190-1996 AA/UNS JIS H4080-1999
JIS H4000-1999
DIN 1725.1-1986/W-Nr. BS 1470-1988 NF A50-411
NF A50-451
ГOCT 4785-1974 IS733-2001
IS737-2001
ISO 209.1-1989 EN 573-3-1994
139 7475 7475/A9475 AI Zn5.5MgCu(A) EN AW-7475/AI Zn5.5MgCu(A)
140 GB/T 3190-1996 AA/UNS ISO 209.1-1989 EN 573-3-1994
141 7010 AI Zn6MgCu EN AW-7010/AI Zn6MgCu
142 AA ISO 209.1-1989 EN 573-3-1994
143 7012 EN AW-7012/AI Zn6Mg2Cu
144 AA EN 573-3-1994
145 7049A 7049A(A-Z8GU) AI Zn8MgCu EN AW-7049A/AI Zn8MgCu
146 AA NF A50-411
NF A50-451
ISO 209.1-1989 EN 573-3-1994
147 7178 AI Zn7MgCu EN AW-7178/AI Zn7MgCu
148 AA ISO 209.1-1989 EN 573-3-1994
Alloy Designation Chemical Designation Classification Filler Application
EN AW-1080A EN AW-Al 99.8(A) NHT R-1080A Chemical plant
EN AW-3103 EN AW-Al Mn1 NHT R-3103 Buildings, heat exchangers
EN AW-4043A EN AW-Al Si5(A) - - Filler wire/rod
EN AW-5083 EN AW-Al Mg4.5Mn0.7 NHT R-5556A Ships, rail wagons, bridges
EN AW-5251 EN AW-Al Mg2Mn0.3 NHT R-5356 Road vehicles, marine
EN AW-5356 EN AW-Al Mg5Cr(A) - - Filler wire/rod
EN AW-5556A EN AW-Al Mg5Mn - - Filer wire/rod
EN AW-6061 EN AW-Al Mg1SiCu HT R-4043A
R-5356
Structural, pipes
EN AW-7020 EN AW-Al Zn4.5Mg1 HT R-5556A Structural, transport
HT = Heat treatable, NHT = Non Heat treatable

Arc Welding

Arc welding is commonly used for joining aluminium alloys. Most of the wrought grades in the 1xxx, 3xxx, 5xxx, 6xxx and medium strength 7xxx (e.g. 7020) series can be fusion welded with arc-based processes. The 5xxx series alloys, in particular, have excellent weldability. High strength alloys (e.g. 7010 and 7050) and most of the 2xxx series are not recommended for fusion welding because they are prone to liquation and solidification cracking.

  • Can you weld aluminium with MIG? MIG welding can be successfully used to join aluminium alloys. The process is best suited for thinner gauges of material, such as aluminium sheet, because the amount of heat required is less when compared to thicker plates. Pure Argon is the preferred shielding gas for this process and the welding wire/rod used should be compositionally as similar as possible to the parts being welded
  • Can you weld aluminium with TIG? TIG welding can also be used for joining aluminium alloys. Owing to the high thermal conductivity of bulk aluminium, the TIG process enables sufficient generation of heat to keep the weld region hot enough to create a weld pool. TIG welding can be used to join thick and thin sections. Similarly to MIG welding, pure argon is the preferred shielding gas and the welding wire/rod used should be compositionally similar to the parts being welded.

Laser Welding

Like other fusion based processes, including arc welding, laser beams can be used to weld many series of aluminium alloys. Laser welding is typically a faster welding process compared to other welding processes due to its high power density at the material’s surface.  Keyhole laser welding is capable of producing high aspect ratio welds (narrow weld width: large weld depth), resulting in narrow heat-affected zones. Laser beam welding can be used with crack sensitive materials, such as the 6000 series of aluminum alloys when combined with an appropriate filler material such as 4032 or 4047 aluminum alloys. Sheilding gases used are selected dependent on the aluminium grade to be joined.

Electron Beam Welding

Similarly to laser welding, electron beams are good at producing fast welds and small weld pools. Electron beams are also better at producing welds in very thick sections of aluminium. Unlike other fusion-based processes, electron beam welding occurs in a vacuum, meaning that a shielding gas is not required, resulting in very pure welds.

Proper filler metal selection (filler wire or filler rod), carefully selected welding parameters and joint design are essential in order to minimise the risk of hot cracking in aluminium alloys when using fusion welding processes like arc, electron beam and laser welding.

Friction Stir Welding Aluminium

Friction Welding

Friction welding is a solid-state joining process (i.e. no melting of the metal occurs), which is particularly suitable for joining aluminium alloys. Friction welding is capable of joining all series of aluminium alloys, including 2xxx and 7xxx, which are difficult with fusion-based processes. Moreover, owing to the nature of the solid-state process, the need for shielding gas is eliminated and superior mechanical performance of the weld region is obtained when compared to fusion welding processes. There are several friction processing variants:

  • Friction stir welding (FSW). FSW was developed at TWI Ltd in 1991. FSW works by using a non-consumable tool, which is rotated and plunged into the interface of two workpieces. The tool is then moved through the interface and the frictional heat causes the material to heat and soften. The rotating tool then mechanically mixes the softened material to produce a weld. The process is typically used for joining aluminium sheet/plate material
  • Refill friction stir spot welding (RFSSW). RFSSW is a development of the FSW process and is used as a spot welding technique to replace rivets in aluminium sheet metal applications
  • Linear friction welding (LFW). LFW works by oscillating one workpiece relative to another while under a large compressive force. The friction between the oscillating surfaces produces heat, causing the interface material to plasticise. The plasticised material is then expelled from the interface, causing the workpieces to shorten (burn-off) in the direction of the compressive force. During the burn-off the interface contaminants, such as oxides and foreign particles, which can affect the properties and possibly the service life of a weld, are expelled into the flash. Once free from contaminants, pure metal to metal contact occurs, resulting in a weld. The process is used for joining bulk aluminium components to produce near-net-shapes
  • Rotary friction welding (RFW). RFW is similar to LFW with the exception that the bulk aluminium parts are cylindrical and rotated to generate frictional heat instead of linearly oscillated

Certifications
factory-changjin
factory-changjin